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ABSTRACT . Design procedures are proposed for model conversion and digital redesign of a
singular system, which is controlluble at finite and impuisive modes. In order to attain o
standard regular problem. we use some techniques to decompose the singudar systent mio a
reduced-order regular subsystem and a nondvnamic subsystem. As a result, some well-known
design methodologies for a regular svstem can be applied to the reduced-order regular
subsystent. Finally e transform the results obtained back to those of the original coordinate
Systemn.,

1. Introduction

A large number of control systems are characterized by continuous-time dynamic
equations. Also many theories and practical methods have been developed for
continuous-time models. However. it is well-known that since the digital computers
and digital processors are not only greatly advanced in technology. but also possess
many advantages such as improved sensitivity, better reliability. no drift. less effect
due to noise as well as disturbance, lower cost, etc., so it is often desirable to refit
these systems with digital transducers and digital controllers. In order to match
the states of the equivalent discrete-time system 1o those of the continuous-time
system as closely as possible, the sampling period must be sufliciently small. Unfor-
tunately. the resulting discrete-time system may be unstable even if the original
continuous-time system is stable. Thus, we apply the so-called digital redesign
technique (1 3) to arrive at an approximated digital system which closely matches
the response of the continuous-time system with the same inputs and initial con-
ditions. rather than designing a new sytsem using digital control theory.

In this paper, we extend the model conversion and digital redesign problems to
singular systems, also called descriptor systems, characterized by
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E. X(t) = A x(0)+ Bu(1), hH

where x{(1)e R”. u(r)e R™. and E, is a singular matrix. The constant matrices £,.
A,.as well as B, all have appropriate dimensions. 1tis known that singular systems
are of practical importance since they appear in many arcas such as electrical
networks. singularly perturbed systems. composite systems, Leontieff models in
multisector economy, Leslie population models in biology. cte. (4).

It should be noted that we assume the pencil (s£,—.4,) to be regular, ie.
det (sE,— A4,) # 0 and that the singular system has a unique solution if the singular
system considered in (1) is controllable at finite and impulsive modes in the sensce
of Cobb (5).

Definition 1 (5)
The singular system is referred to as controllable at finite modes iff rank
[sE,— A, B,)] = n. forali finite se C.

Definition 2 (S)

If rank [E,. B]] = n. then the singular system is referred to as controllable at
impulsive modes.

It is also noted that even if rank [£,. B,] # n, there may still exist a dynamic
feedback control law such that impulsive modes can be moved to finite locations.
In addition, if rank (£,) —deg !det (s£,— A4,)] £ ¢, where rank (E,) 2 ¢ is called
the generalized order of the singular system. and deg (det (£, — A} & kissaid to
be the order of the slow subsystem, then the singular system has ¢ impulsive modes.
which occur in the fast subsystem and are created by either inconsistent initial
conditions or discontinuous control input (6 7).

Cobb (8) and Tsai er af. (9) used preliminary lincar feedback controllers to make
the singular system (1) causal (i.e. to remove impulsive modes from the system
response by moving the associated poles from infinity to some finite locations).
Tsai’s work is more comparable to the elegant and technical paper proposed by
Cobb (8). because Cobb’s approach needs to solve complex and diflicult eigen-
value- eigenvector problems, in particular, when the singular system has a large
order and is in the deflective Jordan form. Also. it is not easy to determine a
preliminary feeback control law such that the impulsive modes can be moved
to finite locations. Although sometimes Tsai's method requires solution of the
cigenvector problem, it is not complicated for processing a low-order submatrix
with all zero eigenvalues.

In this paper, we first transform the singular system with a regular pencil (10)
into a standard onc (11} by using a block modal matrix, constructed via the fast
and numerically stable algorithms of the extended matrix sign function (12 13).
Thus. the singular system can be decomposed into a slow subsystem with finite
modes., and a fast subsystem with infinite modes which include impulsive modes
and nondynamic infinite modes. If the singular system has no impulsive modes,
then the slow subsystem is in a form of a reduced-order regular system and the fast
subsystem is in a nondynamic system in which the fast states only depend on the
input. On the contrary. if the singular system has any impulsive modes. then we
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use the preliminary feedback control law to eliminate it and repeat the above
procedure so that the singular system can be decomposed into a reduced-order
regular system and a nondynamic equation. As a result, we can apply the given
results (2, 14) with respect to model conversion and digital redesign to the reduced-
order regular system. Finally, the results obtained can be transformed back to
those of the original coordinate system by using similarity transformations and
simple substitutions.

I1. Preliminaries
(1) Introduction to the matrix sign function

The matrix sign function of a square matrix A€ """ with Re(a(4)) # 0 1s
detined by (15}

sign (A) = 2sign' (A)— 1, (2)

where 7, 1s an 7 < identity matrix and

|
sign” (A) = , 3€ (#1,- 4) "dzi (3)
i)

¢, is a simple closed contour in right-half plane of £ and encloses all the right-half-
planc cigenvalues of 4. On the other hand, the matrix sign function (12, 16) is also
defined as

sign (A) = A(J A7) P = Ny A7), (4)
where the matrix |, A7 denotes the principal square root of A 7. Two fust and stable
algorithms (12 13) with r{ < 3)th-order convergencee rates to compute the matrix
sign function are listed below.

For r = 2, one has

QUk+1)y= Q214 +Q (k)] . Q) = A. Jim Q(h) = sign(4)  (5)

or

OQk+1) =0 "M+0Mk)]. Q) = A. lim Q(k) = sign (4). (6)

Note that Q(k) = O '(k).

FFor r = 3, one has
Qh+1) = QUBL+O (KL +307(K)] ' Q) = A. lim Q(k) = sign (4).
(7)

Somc fast and numerically stable algorithms with r = 4 can be found in Shich e1
al. (12) and Tsai et al. (13).

One main feature of the matrix sign function is that it preserves the cigenvectors
of the original matrix. This property is useful for studying the eigenstructures of
matrices, as well as for developing applications for engineering problems. A singular
malrix A4 can be modified using the bilincar transformation,

Vol. 330, No. 6, pp. 1063 1086, 1993 _
Printed in Grewt Britain 1063



Juson Sheng-Horng Tsai et al.

A= A—-pl)A+pl,) ", (8)

where p is the radius of a circle with center at the origin such that the circle contains
only those zero eigenvalues, and no eigenvalue of A is located on the circle.
Therefore, the eigenvalues within the circle will be mapped into the left-half planc
of the complex s-plane, and those outside the circle will be mapped into the right-
half plane of the complex s-plane. Thus, the proposed algorithms in (5)- (7) can be
applied for obtaining the sign (). Note that the bilincar transformation preserves
the eigenvectors of the original system.

(ii) Introduction to the regular pencil and the standard one

Definition 3 (10)
Let £, and A4, be two squarc constant matrices. If det (sE,—A,) # 0, for all s,
then (s — A,) is called a regular pencil.

Definition 4 (11)

Let (sE,—A4,) be a regular pencil. If there exist scalars « and f such that
aE,+ 4, = 1,. then (s£,— A4,) is called a standard pencil.

Note that for any regular lincar system (with E, = [,), the regular pencil becomes
a standard pencil by taking % = | and f§ = 0. Furthermore, any regular pencil,
(sE,— A,), can be casily transformed into a standard one by premultiplying
(2E,+f4,) " to E, and A,. respectively, where « and f§ are scalars such that
det (xE,+ f34,) # 0. Hence, the matrix coeflicients of a standard pencil, (s£,— A4,).
become

E, & (xE, +f4,) 'E, 9)
A, 2 (aE, +4,) 'A,. (10)
The modified system retains its state vector x(¢) and the matrices £, and A, have
the following properties.
Lenima 1 (4)

(L1) E,A4, = A,E,, thatis, E, and 4, commute.
(L.2) E,and 4, have the same eigenspaces.

The above propertics cnable us to decompose a singular system into a reduced-
order regular subsystem and a nondynamic subsystem. The detailed derivation 1s
shown in the next section.

H1. The Optimal Regional-pole-placement Design Method for Singular Systems (9)

Consider a linear continuous-time singular system, which is controllable at finite
and impulsive modes, characterized by (1). It is known that the singular system
can be decomposed into a slow and a fast subsystem. As we have discussed in
Scction 11, the regular pencil (sk,— A4,) can easily be transformed into a standard
one. say (s£,— A,). Notc that since £ is a singular matrix. which has at least one
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zero cigenvalue, ff can not equal zero. Hence. we have

(xE,+fA,) "EX(1) = (2E,+BA4,) AN+ (2E 4+ f4,) ' Bu()

= E,X(1) = A,x(1)+ Bu(r), (11)
where £, = (0E, +fi4,) 'E. A, = (x£,+f4,) 'A,and B, = (xE,+[4,) 'B,.Duc
to 2L, + 14, = 1,,so the pencil (s£,— 4,) is a standard one which has the properties

mentioned tn Lemma |,
Now, let

x(1) = M3(1), (12)
where the constant matrix M is a block modal matrix of £, and determined by
means of the extended matrix sign function shown below.

Step V. Find sign (£,) using the extended matrix sign function with an adequate
¢, where

E, = (E,—pl)E,+pl,) '

Step 2. Find sign' (£,) = L[1,+sign (£,)] and sign (F,) = [, —sign (£,)].
Step 3. Construct M = [ind (sign™ (£,))ind (sign  (£,))], where ind () represents
the collection of the lincarly independent column vectors of (¢).
Substituting (12) back to (11}, and multiplying A7 ' on the left of the equality.
one has

M E,MI)

I

M TAMIO+M Bl

1
M —aEYMI(O+M 'Bu)

i

B
£, | 0O
= + ¥(1)
0o | F
- ] : ]
/;(IA"OCIJI) } 0 B,
= + X4+ | 7w, (13)
| ) B,
g 6] | /fu,, Lok

where (1) = [¥(0).54]. M 'E,M = block diagonal {£,, E,}. E, is invertible
with rank (£,) = deg {det (sE,— A,)} £ k. E, is a nilpotent matrix with dimension
(n—k)x(n—~k). and [B.B4]' = M 'B,. Notice that since det(/, ,—af,) = 1.
it is invertible. Simplifying (13) by premultiplying the block  diagonal
VE,Lpd,  —aEy) ' on both sides of the equality. one obtains
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1 _
Lol 0 gE ) 10
+ ) M) = (1)
() ‘ /}(lu A_‘XEJ) IEZ +
() ’ [n A
E 'B,
+ u(r)
p, A*“E:) 13—1
L 0 A | 0 B.
- + | = + s+ u(r). (14)
o | £ o | I, B:

where E =g, —aF,) 'E,, A =1/}E '—al), B.=E 'B, and B =
B, «—xE.) 'B,. Itis remarkable to note that since

rank (£,) —deg !det (s£, — A4,)! = rank (£)), (15)

it is much casier to determine the number of the impulsive mode using the above
equation relating to (14).

In order to avoid the complexity of statement, we discuss only those kind of
singular systems which include at least one impulsive mode. First. assume that the
singular system (14) has ¢ impulsive modes, then rank (£,) = ¢. It should be
emphasized that since the nilpotent matrix £, in genceral, is not in the Jordan block
form, itis necessary to solve the cigenvector problem (17 18) for £,. The following
proposcd method is more convenient for finding the preliminary feedback gain K,
and to prove that K, can climinate the impulsive modecs.

Let
X(1) = Vx@), (16)
where ¥(1) = [XU(0), (0] = [¥(0. (U 'S(0))T. and
L o
V= +
o | U

Uis a modal matrix of £, with dimension (n—k) x (n—k) such that U "£.U is in
the Jordan block form. Substituting (16) into (14) and premultiplying it by V7 !,
we obtain

L | 0 A | 0 B

N

+ W) = + N+ u(1). (t7)
o | £ O 1 1y B

where £, = U "EU, A=A, B.= B _and B, = U 'B,. Notice that £, is in the
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Jordan block form with « blocks of sizes gy pia. ..., 1ty where Z‘,/ , i, = column
{row) number of £, Taking the Laplace transformation of the fast subsystem
EXdn) = X0+ Bu(o) in (17), one obtains

X)) = GE 1, ) "(ES(0)+ BU(s))

If

I
— Y VEUER(0)+ BU(9)). (18)

where ,(',(.\') and U(x) denote the Laplace transtormations of Xy(7) and (7). respec-
tively., £,(0) denotes the initial value of X(f). and /s said to be the nilpotency index
of F,. Taking the inverse Laplace transformation ol the above equation. we have
the well-known result (7)

I Fod
S0 = =Y E0)0 V=Y EiBu ). (19)
[ )

where o(¢) and 8"'(1) denote the delta function and the 7ith derivative of the delta
function. respectively. Apparently. it shows that the impulsive modes of the fast
state result from inconsistent initial conditions of the fast state or discontinuous
control input (orits derivatives).

Here, we propose a preliminary feedback design method to eliminate the impul-
sive modes. which is simpler than Cobb’s (8). The method for determining the

preliminary feedback gain Ky = [k AL K, (dwew x. Where &, is of dimension
mxorj=1.2..., (1 — k). is summarized as follows.

1. Il g, = 1, where | << d. and its corresponding Jordan block is a null matrix.
then

' [)1:()/11-1

AV FR TR T

k ; :()m-k

oyt S

[

/\- St :()m-l'

Wyt i,

2000 4, > |, where | <7< d. and its corresponding Jordan block is not a null

matrix. then

‘)‘(/71,”';1‘< 4/1‘)1)

()( [FTER TR Hl,)l)

/\'H"]va 1, 1=
()(/7“‘ s - - H,””)
/\"u"‘uﬂ TS ,»3:()1'1-1
/"u!yuw -;:‘:()m«h
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where
b
ga | CRel B . Rl
f;" n ky+m
0 if b, =
Sthpy&< 1 ifh,>0 j=12.....m
—1 if b, <0
Let
w(t) = — K1) + (1)
= — [0, 4 K3 () + (). (20)
Substituting (20) back to (17) yields
E (1) = A, %(0) + Bie(1), 21
where
I, | O A — BK, B,
E = | +_,Ak_ + o . Bi= |
o | E 0 | 1 ,-BK B,

Lemmua 2

The singular system in (21) has the original & finite modes and another
g(= rank (£,) = rank (£;)) finitc modes that were induced by applying a linear
preliminary feedback control law u(r) in (20) to the system in (17). All these
finite modes are guaranteed to be controllable.

Here, we have to emphasize that with Cobb’s method for determining the
preliminary feedback control in (20), we may need to find an invertible matrix and
excecute the operations of elementary row and column interchange. Our method,
however, is very easy and efficient requiring no computation. .

Now, we want to decompose the singular system into a reduced-order regular
system with & +¢ controllable finite modes and a nondynamic cquation with
n--k —q infinite nondynamic ones. It can be accomplished by using previously
outlined steps once again. First, we transform the regular form into a standard one
by premultiplying (21) by (yE;,+n4,) ', wherc ; and » are arbitrary scalars such
that (£, +nA,) is invertible. Therefore. we obtain

(E +n4,;) ]EA~‘::(1) = (yE, +ndy) IAI\~\“([)+(;'EA+'7AA) 'Bor(r).  (22)
Let
(1) = MI(1), (23)

where the constant matrix M is determined using the extended matrix sign function.
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The procedure is the same as in the previous illustration for finding M. except that
it operates on (YE, +n4,) 'E,. Substituting (23) into (22). and premultiplying it
by M . one gets

M NE +nd) TEMI)
=M "GE 4nd) AMI+M 'GE Ay B

~ ~ ~
=M '” [, —2GEAnA) EIMI(+M GE A0 P Ba(n)

‘,,[’fl—:uﬁ VB A TEMIS( M GE 4D B
E, | 0
= + X(1)
0o | E
| _
(1, - —7E4) | 0 _
" B,
_ + )+ (1)
| _ B
() \ ) ([n [T -i'EI'A) t
£, 0
= + .\:‘(I)
() ‘ ()w o A
([A ; 'l?\A) | 0 _
" B,
- + 1 R+ | v 24
0 A B

block diagonal {(E,. O, . .. Fy is invertible with rank (E) eg fdet
(sE.— A4 = (¢ +k). Ey is a null matrix with dimension (n ~k—q¢) x(n—Fk-—q).
and [B. B =M "GE +nd) "B

where $(0) = [¥1(0). SO M GE+nA) E, M = block diagonal {E,. £y} =
|

IV. Model Conversion

It is clear to see that the above equation in (24) can be decomposed into a
reduced-order regular system and a nondynamic equation as follows:

S = —nBur(n). (26)
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If #(r) is a piecewise-constant input, i.e. v(t) = o(kT) for kT < t < kT+ T. where
7' is a sampling period. then we have the discrete-time system corresponding to
(25) and (26) in the following :

SnhT+T) = G35 (kT)+ Hr(kT) (27)
SlkTy = — Hu(kT). (28)

where G, = exp(A, 7). H, = ((i—[(, AL B, and A, = nBy.

In general, the matrices G and H_can be determined exactly using the cigenvalue
eigenvector approach (19). However, approximations are required for obtaining
G. and I, matrices when matrix 4‘?\/\ is singular. There are many methods (19)
available 1o evaluate approximately G, and A, ; especially, using Pade’s approxi-
mation method (19-20). which is more popular. Some of the approximations
obtained using the Pade’s approximation method are listed below

Gox (U, — A, T) 'U, +A, )26, (29)
[, AT+ LAY L, o+ AT+ A, T2 6L (30)
and
H~71, ,—-'4,T) 'B, 2 A, (31)
T, = AT+ NALTY] "By & f (32)

Combining (27) with (28) yields

Liow | 0 SkTHT)
n
0 L O,y Sy AT+ T)
G. 0 S kT a,
= + ' +| kD) (33
o | 1 ,, Xk T) H,

We transform (33) back to that of the appropriate discrete-time system coordinate.
which is corresponding to the case of the continuous-time system £.¥,(1) =
(4.~ B,K,)x, (1) + Br(1) where K, = [0, .,. K, JIMV) ', as follows :

Lo | 0
(MVM) + CLMVM) X kT+T)
() | ()u ¢
{ G| 0 a.
= (MVM) + (MVM) "5 (kT)+(MVM) vk T).
o | I, . A,

(34)
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V. Digital Redesign

Consider the slow subsystem and the fast subsystem descrtbed by (25) and (26),
respectively. Also, let the optimal control lTaw obtained by using the method of
Shich et al. (21) for the slow subsystem be

w(1) = = KX + L), (35)

Thus the closed-loop system becomes
R0 = (Ay = By RO + By E (1) (36)
S = By K X — By Er(r) (37)

and its eigenvalues are located on or within the hatched region of Fig. |.
Assuming r(r) = r(k 1) for AT <t <khkT+T. we have the respective discrete-
time models of (36) and (37) as follows :
Y dhT+T) = GRATY+ Hr(kT) (38)
Xk T) = 5By K Sy (kTY - yBuE.rkT). (39)
where G, = exp (I, —B,K)T). H = ((;\714,4;\)(.’7\;\ — El\'\.\) "BLE.. s cigen-
values are located on or within the hatched region of Fig. 2.
Suppose a digital model which approximates the slow subsystem in (25) 1s
represented by
Sl = AuS0) + Bur (k7). (40)
Then the equivalent discrete-time model can be written as

Sk T+T) =Gk TY+ Hyu(kT). (41)

@

Re

FiG. 1. Region of interest in the continuous-time s-plane. x Open-loap poles before design,
O Closed-loop poles after design.
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1.5 +~ T T v

/ AN
0.5F 1
P X\

L\ eor(=AT).0)

or \ 1\ Q - 7 //'/1(1,0) Re
\ \";e/:o.ﬂw
-0.5¢r \\ \“\\ N B /// / -
. //

-1.5 ; 2 P L .
-1.5 -1 -0.5 9 0.5 1 1.5

F1G. 2. Region of interest in the z-plane. x Poles before design. O Poles after design.

where Gy = exp (A, 7). Hy = (Gy—1,.,) A, ' B, Let the digital control law for the
discrete-time model in (41) be

kT = — KXk T)+ Egr(kT). (42)
Then we have the designed closed-loop subsystem as
SJkT+ Ty = (Gy— H KD (KT)+ HEg(KT). (43)
To match X, (AT) = 5,(AT) with a sufliciently small sampling period T and the
same inputs, as well as the inttial conditions, the explicit feedback gain K, and
forward gain E; have alrcady been solved by Tsai er al. (2) as follows.

First, G, can be approximated by using the Pade’s approximation method as

G, = CXP((A'?« - EAKU) Iz [1‘, I 5(45% - E\A KT I[l(, s %(1‘7\/\ - Ekau)T]-
(44)
Next, based on the fact that
(A+BCD) '=4 '—aA '"B(C '+DA4 'By ‘DA . (45)
we can find the important results from the following derivations
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10— MAx = ByK )T ", + 3 Ag — By K )T)
U, AT+ B, TLK) U, 0+ 35 Ay — By KT
= NAGTY Y, ATy TB TR, KA,

—SALTY 'ByTY 'K U, = AGTY 4 HAy — By KT
=, ATy " ALY~ YALT) TBL T2,
+ K, - YTy BT TR, - AT U, AT
=M ATy TBATR R AU, AT YT,
+ K. U, — AT "ByT] 'K, AT "B TK,
Go—H,21,+ K. H) 'K.G,—AK +'A21,+K. H) 'K.HK.

14

Gl‘ﬁ\f[é(lflﬁ+%KC\ﬁ(|) 1]\'“(]‘/’/\_’_(7(')]

d

=G, H K, (46)
and
H =(G.—1,,)(d,~B,K) 'B,E.
<[4, — A, —B,K)T] 'B,TE,
x Al + K. H) "E.
= H,L,. (47)
Hence
K, =\, +1K.Hy) 'K, +Gy (48)
Ey= (U, + K. 1) 'E.. (49)

Finally, the state feedback control law u(A T') can be derived through some adequate
coordinate transformation and the necessary definition,

o SAkTY | . A XAy b (AT
L £ £ ) =2 MM
vk T) ”[\".-(/\'T)} 1l [\..'_(M,J { 1[_(_[(,(7,)}
MV N ['G“*(k T)] (kT) (50)
> My = XN(K . -
(\il(/\T)

By the above definitions, one gets

w(t) = — K. +e(r)

= [0, .. K] [‘“” }er

X(1)

Il

7[()771%/\* k’l](AII) ]\(’)+I(f)
—K.x(n+r(n (51)

>
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t t kT t
" £y i X v — z.0.h. VD) E,z4(t) = (A, — B, K,)za{t) zalt)
- T +B,u(kT)
K
Fii. 3. Digital redesign system,
and
(kTY) = —KyXy(kT)+ Egr(kT)
. Xy(kT) .
—_ — [Kd. Om x{n 4 A}] Ir(,‘(AT)}+ bdr(l\' T)
= - [Kd* ()/u iy /»)] (‘J\')[l"‘l?) I-\.\l(k 71) + E‘Ir(kTW)
L — Ky kT)+ Eg(KT). (52)
where

Kp = [Om\-k* Kl] (MV) l~ K= [Kd~ Om “n oy A)] (AI l~‘7[) ]~

The redesigned digital system is shown in Fig. 3. It is noted that when the discrete-
time state vy(k7) is not accessible, the ideal state reconstructor methods (22 23)
can be applied (o reconstruct the exact discrete-time state xy(k 7)) using the input
data and fast-rate output data of the original continuous-time system without
establishing an observer.

VI. HMustration Example
Consider a lincar continuous-time singular system described in (1) with

2 -3 =2
00221 -3 =3
v P2l =3 =2 W B/_[l 0 0 00 41}
Tl 2 b3 =5 =4 T T e 0 =11 0 0]
021 1 =2 =2
Lo oo -1 0

Since 0, + A, = A, = [, by definition of the standard form, [ £, 4,} is in the
standard form. In other words, if we takcx =0 and f= 1, then £, = £,. A, = A,
and B, = B,. Because £, is singular, i.e. £, includes some zero cigenvalues. utilizing
the bilincar transform to find the similarity transformation matrix M of £, 1s
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necessary. Taking p = 0.5 and using the algorithm described in Secuion I, one

has

(03333 16 —24
0 0.6 1.6
13333 1.6 34
13333 1.6 —2.4
0 1.6 —24

13333 0 0

F= (L, ~pIWE,+pl) ' =

i
]

1220 -4 2
001 20 -2 -2
2200 o4 2
AL (T T T R S
00220 -3 2
2000 0 —2

sign! (£ =

0 -1 -1 0
0 0 -1 0
S e )
e B = g
0 -1 =1 0
—1 0 0 0
o
0 1
N 1 1
M = [ind(sign ' (£))ind(sign (F£))] = .
0 1
1 0

From (13). we obtain

Vol 330, No_ 6, pp. 1063 1086, (993
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0.16
0.16
0.16
0.76
0.16
0

— 92 ' o = 12

0

_— e () — — e

0.9067

—1.76

0.9067
—0.6933

—1.3333

0

24

—1
—1
0
—1
—1

2.24
— 1,76
2.24
0.64
224
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1 00 | 000
021 | 000
E | 0 002 | 000
M'EM=| - + = +
o | L 000 | 000
000 | 00 1
000 | 00 0]
I |0
M AM = +
0o | I

! o[t 1 20 1T
MEUB=1BUBY =1y 1 1 | 00 —1|

Based on (14) and the fact that £, is in the Jordan form, one has

00 0 10 0
o o .
V=1, E=EFEFE, = 0 0 1 L A=A = ;EI r_ 10 0.5 =025
0 0 0 ; 0 0 05
0 20
B =B =E 'B = |02 075\ g_-p=5=|9 0
05 05 -

Since rank (E;) = ¢ = 1, the singular system has one impulsive mode by means of
(15) associated with (14).

Now, we compute the preliminary feedback gain K, for climinating the impulsive
mode of the singular system. As g, = 1, A, = O, ,. In addition, since v> = 2 and
its corresponding Jordan block is not a null matrix, onc has

/\’u v /\'1 = [():(h”” le)] = |:O(h”):| = |: ! :l
‘ O(blgq wy:):)_ ()(b 1_,) —1
K =k =0,

oyt

Thus we get the preliminary feedback gain

and the control law

. 0O 0 0 0 1 0] .
u(t) = —[05. 1 K.].\'(1)+1'(I):~[0 00 0 —1 0}.\‘(1)+1*(1).
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Computing the closed-loop singular system with respect to the preliminary feedback
aain, yiclds

L0 0 | 0 0 0]
010 | 000
10 00 1 | 000
E, = + = +
o | E 000 | 000
000 | 00 I
000 | 0 0 0]
L0 0 L0 1 0]
0 05 —025 | 0 =10
i1 —BK O 0 05 | 0 0 0
1, = + = T
O | 1Bk 0 0 0 1 =200
0 0 0 [0 1 0
o0 0 | 0 -2 1]
Co 0 W
025 —0.75
B. 0.5 05
B, = =
B 2 0
0 0
o —1

We transform the regular form (£, 4,0 into a standard one once again with
b= [ A &
= =2and y = — 1, and use the extended matrix sign function to find a similarity

transformation matrix M of £

(1 00 0 0 0]
01 0 0 00
N 001 0 00
M=1600 1 10
00 0 05 0 1

0 00 1 00

Let ¥(7) = M3(1) and compute (24). then one has

Val 330, No. 6, pp. 1063 10X6, 1943
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1“/7 : (A/‘[;A +)]/"/‘) : b‘;\ 1‘/7 =

1
0
0
- |0

0

>l

sh

M '"GCE+n4) 'B, =

_?cl

1080

0
4
o,
| 0 0 —0.3333 | 0 0]
0 06667 —0.1111 —0.2222 | 0 0
0 0 0.6667 0 [0 0
0 0 0 0.6667 I 0 0
+
0 0 0 0 00
L0 0 0 0 | 0 0]
1 _
'1(14 -7Ly) ] 0
+
0 ! I8
H
0 —-(.6667 | 0 0]
0.3333  —0.2222  —(.4444 | 0 0
0.3333 0 ! 0 0
0 (0.3333 | 0 0
4
0 0 | -1 0
0 0 | 0 -1
[ 0.3333 0.6667
—0.3333  —0.1111
0.3333 0.3333
_ 0.3333 —0.3333
-1 — 1
(0.5 —-0.5 |
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Therelore. we get the reduced-order regular subsystem and the nondynamic sub-
system in (25) and (26). respectively.

[ = (B - oIpx(n+E By

10 0 ~0.5 0.5 0.5

0 05 —025 —05 ~0.25 —0.25
=10 0 05 o | WO+ 0s 0.5 | ()

00 0 0.5 0.5 —05

and

(i) Model conrersion
The discrete-time model corresponding to (25) and (26) is in (27) and (28).
respectively, where 7= 0.1 s,

11052 0 0 —0.0539
0 10513 —0.023 —0.052
G=op(d = 0 1.0513 0
0 0 0 1.0513

0.0513  0.0539
- -~ —0.02 —0.02 - _ 1 |
= (G 1Ay By = 00276 —0.0250 | H[_:”le:[ }
0.0513  0.0513 -05 05
0.0513  —0.0513

Thus we find the discrete-time singular system corresponding to the continuous-
time singular system E,34(1) = (A4, — B RK)v(0) + B.o(kT) from (34) as follows:

(11 —05 0 —05 05]
Lo o o1 0 0 0 0
. . N 1 05 0 os 0.5
: o | o I 1 =15 | -05 05
0 1 —05 0 05 05
o 1000
Vol 330, No. 6, pp. 1063 1086, 1993 1081
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G. | 0
(MVM) + (MVM) !
o | I

11052 0.0513 —0.1321 —0.0263 0.0532 0.1584
0 10513 —-0.0536  —0.0263 0.0788 0.0788
0.1052 0.0513 08679  —0.0263 0.0532 0.1584
0.1052 0.0513  --0.1834  1.0250  0.0532 0.1584
0 0.0513  —0.0782  —0.0263 1.1045 0.1045
0.1052 0 —0.1052 0 0 1.1052

0.4468  —0.3942
—0.0788  0.0263
‘ —0.5532 —1.3942
J: —~0.5532  ~1.2916
0.3955  —0.4481

—1  —0.894%

The continuous-time singular system has four finite cigenvalues, {1,0.5.0.5,0.5},
and two infinitc nondynamic eigenvalues. Its corresponding discrete-time modecl
has four finite cigenvalues, {1.1052,1.0513,1.0513,1.0513}, and two infinite non-
dynamic cigenvalues.

T

(MVM) {

5

f

(1) Digital redesign
Set the desired control law for the slow subsystem as described in (35) where

’ [7.981‘) —23.9457 —13.8190 58507 ]

28.3801  —1.1403  —21.8009 —6.8643 | E

w =1

The eigenvalues of the closed-loop continuous-time singular system £.%(1) =
(A, — B.K)x(1)+ B,r(1), denoted by a(sE, — 4,4+ B,K) where K = ([0, 5, K] +[K...
O...]JM "{MV) ' include two infinite nondynamic eigenvalues and four finite
cigenvalues | —3, —2.5, —2.5, —2.5} which lie within the specified region with
h = lin Fig. I. Therefore, onc has the equivalent discrete-time model in (41) with

(11052 0 0 0.0539
0 10513 —00263 —0.0526
Go=exp(d, Ty = | 0 1.0513 0
0 0 0 1.0513

0.0513  0.0539

~0.0276  —0.0250
Hi=Go—10A0 By = | 00513 00513

0.0513  —0.0513
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Hence K, and £, concerning the digital control law in (42) are
Ky='U-+ VKT 'K+ Gy) =

6.1532 —18.4535  —10.2956  4.8638
21.3588 —0.7265  —15.9422 55982

0.7516 ;0.0054‘J

Ey= (I, + K ) 'E =
4= (LR E [4-0.0045 —0.7163

Thus the state feedback gains K, and K for continuous-time singular system and
the redesigned sampled-data system, respectively, are
K,=[0. . K](MV) !
0O 1 00 -1 0
:[0 —1 0 0 1 ()J
K= [Ky.O: J(MVM) !

6.1532  —18.4535 —13.5897 ~10.2956 17.7322 23.8853
- 213588 —0.7265 --6.3246 —~ 159422 0.9081 22.2668 |

The cigenvalues of the equivalent discrete-time singular system

L | 0
(MI'M) + (MVM) 'x(hkT+T)
o | 0,
G. | O H.
= (MV'M) + (MVM) - K (xy(kT)
o | I A,
.
+(MVAM) Ex(kT)
H,

include two infinite nondynamic cigenvalues and four finite eigenvalues 0.7408,
0.7788. 0.7788. 0.7788! which lic within the specified region with /=1 in Fig.
2 The simulation results with respect to controls are shown in Figs 4 and 5.
respectively.

VI. Conclusions

The model conversion and digital redesign problems for a regular system have
been extended 1o the case of a singular system which is controllable at finite and
impulsive modes. If the singular system does not have any impulsive mode. then
we can casily utilize the good characteristics of the standard pair and apply the
extended matrix sign function to decompose the singular system into a reduced-

Vol. 330, No. 6, pp. 1063 1086, 1993
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— continuous-time system

—- redesigned digital system

ze(t) zas(t)

z3(¢) zea(t)

zs(t) zas(t)

@ zi(t) zai(t)
5
a, zu(t) zau(t)
8
- z3({t) z4a(t)
{
0 0.5 1 1.5 2 2.5 3 time (sec.)
Fia. 4a. Simulation results.
0.2 ‘ [ ‘\ Y T . - T
\\ — continuous-time system J
0.15+ . .
z \ — redesigned digital system |
AT ‘ ,
3 Py R z4e(t)
=
& zaalt)
3
bt z4s(t)
-0.05
z41(t)
-0.1 T T zqalt)
- zs(t) zaslt)
-0.151 ¢ | -
P
[
-0.2 . E n c L s s " ;
0 0.5 1 1.5 2 2.5 3 time (sec.)

FiG. 4b. A part of Fig. 4a.

order regular subsystem and a nondynamic subsystem. Otherwise, we must apply
a preliminary feedback control law, which is simpler and more efficient than that
of Cobb’s. to the singular system in order to eliminate all impulsive modes. Finally,
we apply the given results to the reduced-order regular subsystem. and then by

Jaurnal of the Frankhno Institute
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'_f‘

___;____——J——'.—___L—‘____x’___—\

0 0.5 1 1.5 2 2.5 3 time (sec.)

FiG. 5. Control signals.

relating the reduced-order regular subsystem are transformed back o those of the
original coordinates.
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